DSP207 8W-30W ABS Sound Projector

Features

$>$ Elegant Design, 70/100V, 8-30W, with multiple terminals
$>$ Max SPL: $102 \pm 2 \mathrm{~dB}$
$>$ Built-in 100v/70v transformer
$>$ Wide Freq.Resp.: $90 \mathrm{~Hz}-18 \mathrm{kHz}$
$>$ High sensitivity: $91 \pm 2 \mathrm{~dB}$
$>$ Equipped with bracket for hanging or mounting
$>$ Made of high quality industrial plastic

Description

The DSP207 is a sound projector with a $70 \mathrm{v} / 100 \mathrm{v}$ transformer built in. The $70 \mathrm{v} / 100 \mathrm{v}$ transmission is realized in a high-voltage, low-current mode, which makes longer distance transmission and parallel connection of multiple loudspeakers possible.

This speaker is designed of wide frequency response $(90-18,000 \mathrm{~Hz})$; It is made of high quality industrial plastic, light weight, with long-term durability, and will never be out of shape or fade; Equipped with bracket for hanging or mounting; Driver surround excellent damping, long life, clear and sonorous sounds.

It can be applied to different occasions vary in area sizes and background noises, such as station, park, school, square, military camp, industrial park, etc.

Specification

MODEL	DSP207
Rated Power	$8-30 \mathrm{~W}$
Line Voltage	$70 / 100 \mathrm{~V}$
Sensitivity(1M,1W)	$91 \pm 2 \mathrm{~dB}$
Max SPL(1M)	$102 \pm 2 \mathrm{~dB}$
Freq. Resp	$90 \mathrm{~Hz}-18 \mathrm{kHz}$
Weight	2 kg

Positioning Dimensions

Installation

1. Fit three $\Phi 8 \mathrm{~mm}$ screws in the position where installation is needed as shown above;
2. Set the system in those three screws;
3. Connect audio broadcasting wire to the terminals according to the table below;

Power Line Voltage	70 V	100 V
Terminals	8 W	15 W
Red--- Blue	15 W	30 W
Red --- White		

4. Finally, adjust the direction of the system and examine whether it is steady.

FREQ. RESPONSE

(dB SPL, 1W, 1m)

DISTORTION

$(\mathrm{THD}<1.5 \% \quad 1 \mathrm{~W}, ~ 1 \mathrm{~m}, ~ 100 \mathrm{~Hz} \sim 10 \mathrm{kHz})$

