DSP 107
 8W-30W ABS Sound Projector

Features

$>$ Elegant Design, 70/100V, 8-30W, with multiple terminals
$>$ Max SPL: $102 \pm 2 \mathrm{~dB}$
$>$ Built-in $100 \mathrm{v} / 70 \mathrm{v}$ transformer
> Wide Freq.Resp.: $110 \mathrm{~Hz}-18 \mathrm{kHz}$
$>$ High sensitivity: $91 \pm 2 \mathrm{~dB}$
$>$ Hanging style and the suspensory is adjustable
$>$ Made of high quality industrial plastic

Description

The DSP107 is a sound projector with a $70 \mathrm{v} / 100 \mathrm{v}$ transformer built in. The $70 \mathrm{v} / 100 \mathrm{v}$ transmission is realized in a high-voltage, low-current mode, which makes longer distance transmission and parallel connection of multiple loudspeakers possible.

This speaker is designed of wide frequency response $(110-18,000 \mathrm{~Hz})$; It is made of high quality industrial plastic, light weight, with long-term durability, and will never be out of shape or fade; Hanging style and the suspensory is adjustable; Driver surround excellent damping, long life, clear and sonorous sounds.

It can be applied to different occasions vary in area sizes and background noises, such as station, park, school, square, military camp, industrial park, etc.

Specification

MODEL	DSP107
Rated Power	$8-30 \mathrm{~W}$
Line Voltage	$70 / 100 \mathrm{~V}$
Sensitivity(1M,1W)	$91 \pm 2 \mathrm{~dB}$
Max SPL(1M)	$102 \pm 2 \mathrm{~dB}$
Freq. Resp	$110 \mathrm{~Hz}-18 \mathrm{kHz}$
Weight	2 kg

Dimension \& Installation

Installation

1. Fit the clasp on ceiling where installation is needed;
2. Pull the semicircle cap as shown in the left figure above. let the suspension wire penetrate through the clasp and adjust its length, then screw tight the clasp;

Power Line voltage	70 V	100 V
Terminals	8 W	15 W
Red--- Blue	15 W	30 W
Red --- White		

3. Push the semicircle cap up to cover the clasp
4. Finally, examine whether it is steady.

FREQ. RESPONSE

(dB SPL, 1W, 1m)

DISTORTION

$(\mathrm{THD}<1.5 \% \quad 1 \mathrm{~W}, ~ 1 \mathrm{~m}, ~ 100 \mathrm{~Hz} \sim 10 \mathrm{kHz})$

